An Implementation of a Reliable Message Broadcast for the CMS Event Builder System

I. Suzuki, M. Litmaath, V. O'Dell,

S. Pavlon, K. Sumorok

Fermi National Accelerator Laboratory, USA

Massachusetts Institute of Technology, USA

2000/02/09 CHEP2000, Padova

Contents

- Introduction
 - CMS data acquisition system
 - Readout Control Network
- Reliable broadcast protocol
 - Protocol details
- Implementation
- Benchmark tests
- Summary

CMS Data Acquisition System

- 512 RUs and 512 BUs
- EVM controls/monitors the event flow

Readout Control Network

- Trigger throttling information from the RUs

Requirements of the RCN

- Network
 - Broadcast
 - Bandwidth: 10Mbps
 - **-** Latency:
 - ★ Front-End buffer depth ~10ms
 - \star O(ms)/(a packet of ~100 triggers)
- Protocol
 - Total reliability

Reliable Broadcast Protocol

- NACK based
- Sequential packet ID + CRC
- Forward Error Correction
- Traffic regulation with ACK packets

Protocol (cont'd)

• In case of the 3+1(XOR) FEC

Test System

To implement/understand the protocol with minimal effort

- PCs + FastEthernet SW
- Linux 2.2.12
- UDP/IP

Implementation

- 1 EVM PC + 3 RU PCs
- Internal L1T generation
- Artificial packet drops
- 3 words/trigger
- 64 triggers/packet
- No CRC

Bandwidth

 Global fit with a simple model

$$f_{noFEC}(\mu) = \frac{a}{(1+b\mu)} \frac{1}{(1+c/1)}$$

$$f_{1+1}(\mu) = \frac{1}{2} \frac{a}{(1+b\mu^2)} \frac{1}{(1+c/2)}$$

$$f_{3+1}(\mu) = \frac{3}{4} \frac{a}{(1+6b\mu^2)} \frac{1}{(1+c/4)}$$

- Bandwidth is better than 10Mbps
- Effect of packet drops is understood with a simple model

Bandwidth

- Effect of FECs
 - No FEC
 - → 1+1(dup)
 - **3**+1(XOR)
- Measured under BG traffic

3+1 FEC shows good BW for all drop rates

Latency

Jitter: Variance of the packet receive timing

- noFEC: 17.1 [μs]
- **-** 1+1(dup): 3.6
- 3+1(XOR): 3.4

- Jitter is smaller than the requirement.
- Long tails of Jitter is not understood.

Latency (cont'd)

Delay: Time spent to get a repair packet

- noFEC: 2 [ms]
- → 1+1(dup): 4
- → 3+1(XOR): 4

- The delay is smaller than 10ms (FED buffer).
- Distribution of the delay is not understood.

Traffic regulation

 How to avoid network congestions

The EVM requires
ACK packets from
one RU for each
trigger packet.

14

Summary

- A reliable broadcast protocol was proposed and implemented on a Linux test system
- Characteristics of FEC and traffic regulation mechanism were shown with benchmarks
- Further studies on long latency tail are necessary
- Re-design and implementation for the real system are planned. (more robust protocol, performance tuning, IEEE1394)